Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar.
نویسندگان
چکیده
Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcription factors (PtrWNDs) are master switches activating a suite of downstream transcription factors, and together, they are involved in the coordinated regulation of secondary wall biosynthesis during wood formation. We show that transgenic poplar plants with dominant repression of PtrWNDs functions exhibit a drastic reduction in secondary wall thickening in woody cells, and those with PtrWND overexpression result in ectopic deposition of secondary walls. Analysis of PtrWND2B overexpressors revealed up-regulation of the expression of a number of wood-associated transcription factors, the promoters of which were also activated by PtrWND6B and the Eucalyptus EgWND1. Transactivation analysis and electrophoretic mobility shift assay demonstrated that PtrWNDs and EgWND1 activated gene expression through direct binding to the secondary wall NAC-binding elements, which are present in the promoters of several wood-associated transcription factors and a number of genes involved in secondary wall biosynthesis and modification. The WND-regulated transcription factors PtrNAC150, PtrNAC156, PtrNAC157, PtrMYB18, PtrMYB74, PtrMYB75, PtrMYB121, PtrMYB128, PtrZF1, and PtrGATA8 were able to activate the promoter activities of the biosynthetic genes for all three major wood components. Our study has uncovered that the WND master switches together with a battery of their downstream transcription factors form a transcriptional network controlling secondary wall biosynthesis during wood formation.
منابع مشابه
The Poplar MYB Master Switches Bind to the SMRE Site and Activate the Secondary Wall Biosynthetic Program during Wood Formation
Wood is mainly composed of secondary walls, which constitute the most abundant stored carbon produced by vascular plants. Understanding the molecular mechanisms controlling secondary wall deposition during wood formation is not only an important issue in plant biology but also critical for providing molecular tools to custom-design wood composition suited for diverse end uses. Past molecular an...
متن کاملFunctional characterization of poplar wood-associated NAC domain transcription factors.
Wood is the most abundant biomass produced by land plants. Dissection of the molecular mechanisms underlying the transcriptional regulation of wood formation is a fundamental issue in plant biology and has important implications in tree biotechnology. Although a number of transcription factors in tree species have been shown to be associated with wood formation and some of them are implicated i...
متن کاملPoplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation
Wood is formed by the successive addition of secondary xylem, which consists of cells with a conspicuously thickened secondary wall composed mainly of cellulose, xylan and lignin. Currently, few transcription factors involved in the direct regulation of secondary wall biosynthesis have been characterized in tree species. Here, we show that PdMYB221, a poplar ortholog of the Arabidopsis R2R3-MYB...
متن کاملPtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar
Some R2R3 MYB transcription factors have been shown to be major regulators of phenylpropanoid biosynthetic pathway and impact secondary wall formation in plants. In this study, we describe the functional characterization of PtoMYB156, encoding a R2R3-MYB transcription factor, from Populus tomentosa. Expression pattern analysis showed that PtoMYB156 is widely expressed in all tissues examined, b...
متن کاملPtoMYB92 is a Transcriptional Activator of the Lignin Biosynthetic Pathway During Secondary Cell Wall Formation in Populus tomentosa.
Wood is the most abundant biomass in perennial woody plants and is mainly made up of secondary cell wall. R2R3-MYB transcription factors are important regulators of secondary wall biosynthesis in plants. In this study, we describe the identification and characterization of a poplar MYB transcription factor PtoMYB92, a homolog of Arabidopsis MYB42 and MYB85, which is involved in the regulation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 157 3 شماره
صفحات -
تاریخ انتشار 2011